Tuesday, 12 September 2017

Moving Average Model Varianz


Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadrierte Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Mittelwert (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Filmtutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) 8.4 Verschieben von Durchschnittsmodellen Anstatt Vergangenheitswerte der Prognosedatei in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler in einem Regressionsmodell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Man beachte, daß jeder Wert von yt als gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden kann. Jedoch sollten gleitende Durchschnittsmodelle nicht mit der gleitenden glatten Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die gleitende gleitende Durchschnittskurve für die Schätzung des Trendzyklus der vergangenen Werte verwendet wird. Abbildung 8.6: Zwei Beispiele für Daten aus gleitenden Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normal verteiltes Weißrauschen mit Mittelwert Null und Varianz Eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerterms et nur den Maßstab der Reihe ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Beispielsweise können wir dies bei einem AR (1) - Modell demonstrieren: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext ende Provided -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So erhalten wir schließlich yt und phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir alle invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.2.1 Verschieben von Durchschnittsmodellen (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt overset N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0. Der Grund dafür ist, dass durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. Navigation

No comments:

Post a Comment