Saturday 30 September 2017

Moving Average Darstellung Var Model


Dokumentation a ist ein konstanter Vektor von Offsets mit n Elementen. A i sind n - by-n Matrizen für jedes i. Die A i sind autoregressive Matrizen. Es gibt p autoregressive Matrizen. 949 t ist ein Vektor von seriell unkorrelierten Innovationen. Vektoren der Länge n. Die 949 t sind multivariate normale Zufallsvektoren mit einer Kovarianzmatrix Q. Wobei Q eine Identitätsmatrix ist, sofern nichts anderes angegeben ist. B j sind n - by-n Matrizen für jedes j. Die B j sind gleitende Mittelmatrizen. Es gibt q gleitende Mittelmatrizen. Xt ist eine n-by-r-Matrix, die exogene Terme zu jedem Zeitpunkt t darstellt. R die Zahl der exogenen Reihen. Exogene Terme sind Daten (oder andere nicht modellierte Eingaben) zusätzlich zur Reaktionszeitreihe y t. B ist ein konstanter Vektor von Regressionskoeffizienten der Größe r. Das Produkt X t middotb ist also ein Vektor der Größe n. Im allgemeinen sind die Zeitreihen y t und X t zu beobachten. Mit anderen Worten, wenn Sie Daten haben, repräsentiert es eine oder beide dieser Serien. Sie kennen nicht immer den Versatz a. Koeffizient b. Autoregressive Matrizen A i. Und gleitende Mittelmatrizen B j. Normalerweise möchten Sie diese Parameter auf Ihre Daten anpassen. Siehe die Referenzseite der vgxvarx-Funktion zum Schätzen von unbekannten Parametern. Die Innovationen 949 t sind zumindest in den Daten nicht zu beobachten, obwohl sie in Simulationen beobachtbar sind. Lag-Operator-Darstellung Es gibt eine äquivalente Darstellung der linearen autoregressiven Gleichungen in Hinsicht auf Lag-Operatoren. Der Lag-Operator L bewegt den Zeitindex um eins zurück: L y t y t 82111. Der Operator L m bewegt den Zeitindex um m zurück. L m y t y t 8211 m. In der Verzögerungsoperatorform wird die Gleichung für ein SVARMAX (p. q.r) - Modell (A 0 × 2212 × 2211 i 1 p A i L i) y t a X t b (B 0 × 2211 j 1 q B j L j) x03B5 t. Diese Gleichung kann als A (L) y t a X t b B (L) x03B5 t geschrieben werden. Ein VAR-Modell ist stabil, wenn det (I n × 2212 A 1 z × 2212 A 2 z 2 x 2212 x 2212 A pzp) x2260 0 x00A0x00A0forx00A0x00A0 z x2264 1. Diese Bedingung bedeutet, dass bei allen Neuerungen gleich Null der VAR-Prozess zu a konvergiert wie die Zeit vergeht. Siehe Luumltkepohl 74 Kapitel 2 für eine Diskussion. Ein VMA-Modell ist invertierbar, wenn det (I n B 1 z B 2 z 2. B q z q) x2260 0 x00A0x00A0forx00A0x00A0 z x2264 1. Diese Bedingung bedeutet, dass die reine VAR-Darstellung des Prozesses stabil ist. Eine Erläuterung zur Konvertierung zwischen VAR - und VMA-Modellen finden Sie unter Ändern von Modelldarstellungen. Siehe Luumltkepohl 74 Kapitel 11 für eine Diskussion von invertierbaren VMA-Modellen. Ein VARMA-Modell ist stabil, wenn sein VAR-Teil stabil ist. Ähnlich ist ein VARMA-Modell invertierbar, wenn sein VMA-Teil invertierbar ist. Es gibt keinen klar definierten Begriff der Stabilität oder Invertierbarkeit für Modelle mit exogenen Eingaben (z. B. VARMAX-Modellen). Ein exogener Eingang kann ein Modell destabilisieren. Erstellen von VAR-Modellen Um ein Mehrfach-Zeitreihenmodell oder mehrere Zeitreihendaten zu verstehen, führen Sie im Allgemeinen die folgenden Schritte aus: Importieren und Verarbeiten von Daten. Geben Sie ein Modell an. Spezifikation Structures mit No Parameter Values, um ein Modell anzugeben, wenn MATLAB x00AE die Parameter Specification Structures mit ausgewählten Parameterwerten schätzen soll, um ein Modell anzugeben, in dem Sie einige Parameter kennen und wollen, dass MATLAB die anderen Schätzwerte ermittelt Eine passende Anzahl von Verzögerungen für Ihr Modell Passen Sie das Modell an Daten an. Anpassen von Modellen an Daten, um vgxvarx zu verwenden, um die unbekannten Parameter in Ihren Modellen abzuschätzen. Dies kann Folgendes mit sich bringen: Modell-Repräsentationen ändern, um Ihr Modell auf einen Typ zu ändern, den vgxvarx behandelt. Analysieren und prognostizieren Sie das Modell. Dies kann Folgendes beinhalten: Untersuchen der Stabilität eines angepassten Modells, um zu bestimmen, ob Ihr Modell stabil und invertierbar ist. VAR Model Forecasting zur Prognose direkt von Modellen oder zur Prognose einer Monte-Carlo-Simulation. Berechnen von Impulsantworten, um Impulsantworten zu berechnen, die Prognosen basierend auf einer angenommenen Änderung einer Eingabe in eine Zeitreihe liefern. Vergleichen Sie die Ergebnisse Ihrer Modelle Prognosen, um Daten für die Prognose gehalten. Ein Beispiel finden Sie in der VAR-Modell-Fallstudie. Ihre Bewerbung muss nicht alle Schritte in diesem Workflow beinhalten. Beispielsweise können Sie keine Daten haben, sondern ein parametrisiertes Modell simulieren. In diesem Fall würden Sie nur die Schritte 2 und 4 des generischen Workflows durchführen. Sie können durch einige dieser Schritte iterieren. Verwandte Beispiele Wählen Sie Ihr Land2.1 Gleitende Durchschnittsmodelle (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt overset N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0. Der Grund dafür ist, dass durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. NavigationMoving-Durchschnittliche Darstellung autoregressiver Approximationen Wir untersuchen die Eigenschaften einer unendlichen MA-Repräsentation einer autoregressiven Approximation für einen stationären, realwertigen Prozess. Dabei geben wir eine Erweiterung des Wiener-Theorems im deterministischen Approximationsaufbau. Wenn wir mit Daten umgehen, können wir dieses neue Schlüsselelement verwenden, um einen Einblick in die Struktur unendlicher MA-Darstellungen von eingebauten autoregressiven Modellen zu erhalten, wobei die Ordnung mit der Stichprobengröße zunimmt. Insbesondere geben wir eine einheitliche Schranke für die Schätzung der gleitenden Mittelwertkoeffizienten über autoregressive Approximation, die über alle ganzen Zahlen gleich ist. 423.pdf

No comments:

Post a Comment